90 research outputs found

    Exploring the Electrophysiological Correlates of the Default-Mode Network with Intracerebral EEG

    Get PDF
    While functional imaging studies allow for a precise spatial characterization of resting state networks, their neural correlates and thereby their fine-scale temporal dynamics remain elusive. A full understanding of the mechanisms at play requires input from electrophysiological studies. Here, we discuss human and non-human primate electrophysiological data that explore the neural correlates of the default-mode network. Beyond the promising findings obtained with non-invasive approaches, emerging evidence suggests that invasive recordings in humans will be crucial in order to elucidate the neural correlates of the brain's default-mode function. In particular, we contend that stereotactic-electroencephalography, which consists of implanting multiple depth electrodes for pre-surgical evaluation in drug-resistant epilepsy, is particularly suited for this endeavor. We support this view by providing rare data from depth recordings in human posterior cingulate cortex and medial prefrontal cortex that show transient neural deactivation during task-engagement

    A Blueprint for Real-Time Functional Mapping via Human Intracranial Recordings

    Get PDF
    International audienceBACKGROUND: The surgical treatment of patients with intractable epilepsy is preceded by a pre-surgical evaluation period during which intracranial EEG recordings are performed to identify the epileptogenic network and provide a functional map of eloquent cerebral areas that need to be spared to minimize the risk of post-operative deficits. A growing body of research based on such invasive recordings indicates that cortical oscillations at various frequencies, especially in the gamma range (40 to 150 Hz), can provide efficient markers of task-related neural network activity. PRINCIPAL FINDINGS: Here we introduce a novel real-time investigation framework for mapping human brain functions based on online visualization of the spectral power of the ongoing intracranial activity. The results obtained with the first two implanted epilepsy patients who used the proposed online system illustrate its feasibility and utility both for clinical applications, as a complementary tool to electrical stimulation for presurgical mapping purposes, and for basic research, as an exploratory tool used to detect correlations between behavior and oscillatory power modulations. Furthermore, our findings suggest a putative role for high gamma oscillations in higher-order auditory processing involved in speech and music perception. CONCLUSION/SIGNIFICANCE: The proposed real-time setup is a promising tool for presurgical mapping, the investigation of functional brain dynamics, and possibly for neurofeedback training and brain computer interfaces

    Interictal Functional Connectivity of Human Epileptic Networks Assessed by Intracerebral EEG and BOLD Signal Fluctuations

    Get PDF
    In this study, we aimed to demonstrate whether spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal derived from resting state functional magnetic resonance imaging (fMRI) reflect spontaneous neuronal activity in pathological brain regions as well as in regions spared by epileptiform discharges. This is a crucial issue as coherent fluctuations of fMRI signals between remote brain areas are now widely used to define functional connectivity in physiology and in pathophysiology. We quantified functional connectivity using non-linear measures of cross-correlation between signals obtained from intracerebral EEG (iEEG) and resting-state functional MRI (fMRI) in 5 patients suffering from intractable temporal lobe epilepsy (TLE). Functional connectivity was quantified with both modalities in areas exhibiting different electrophysiological states (epileptic and non affected regions) during the interictal period. Functional connectivity as measured from the iEEG signal was higher in regions affected by electrical epileptiform abnormalities relative to non-affected areas, whereas an opposite pattern was found for functional connectivity measured from the BOLD signal. Significant negative correlations were found between the functional connectivities of iEEG and BOLD signal when considering all pairs of signals (theta, alpha, beta and broadband) and when considering pairs of signals in regions spared by epileptiform discharges (in broadband signal). This suggests differential effects of epileptic phenomena on electrophysiological and hemodynamic signals and/or an alteration of the neurovascular coupling secondary to pathological plasticity in TLE even in regions spared by epileptiform discharges. In addition, indices of directionality calculated from both modalities were consistent showing that the epileptogenic regions exert a significant influence onto the non epileptic areas during the interictal period. This study shows that functional connectivity measured by iEEG and BOLD signals give complementary but sometimes inconsistent information in TLE

    Ten years of Nature Reviews Neuroscience: insights from the highly cited

    Full text link

    Microcognitive science : bridging experiential and neuronal microdynamics

    Get PDF
    International audienceNeurophenomenology, as an attempt to combine and mutually enlighten neural and experiential descriptions of cognitive processes, has met practical difficulties which have limited its implementation into actual research projects. The main difficulty seems to be the disparity of the levels of description: while neurophenomenology strongly emphasizes the micro-dynamics of experience, at the level of brief mental events with very specific content, most neural measures have much coarser functional selectivity, because they mix functionally heterogeneous neural processes either in space or in time. We propose a new starting point for this neurophenomenology, based on (a) the recent development of human intra-cerebral EEG (iEEG) research to highlight the neural micro-dynamics of human cognition, with millimetric and millisecond precision and (b) a disciplined access to the experiential micro-dynamics, through specific elicitation techniques. This lays the foundation for a microcognitive science, the practical implementation of neurophenomenology to combine the neural and experiential investigations of human cognition at the subsecond level

    Définition de mesures quantitatives de l attention sélective chez l homme

    No full text
    The objective of this thesis was to produce a non-invasive quantitative measurement of the level of attention of an individual, calculable in real-time. In particular we studied the process underlying the attentive treatment of a verbal information: to understand and memorize it. Our first study involved the memorization of letters (verbal working memory) and our second study involved the treatment of words. We have proposed three tasks to two groups of patients suffering from drug-resistant epilepsy with depth electrodes for a pre-surgical exploration. The studies that we have conducted have allowed us to validate the assumption that the gamma oscillations, and the monitoring of their modulations, was a quantitative indicator relevant attentional commitment of an individual as part of intracerebral recordingsLYON1-BU.Sciences (692662101) / SudocSudocFranceF
    • …
    corecore